12 research outputs found

    NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds

    Full text link
    In order for artificial agents to successfully perform tasks in changing environments, they must be able to both detect and adapt to novelty. However, visual novelty detection research often only evaluates on repurposed datasets such as CIFAR-10 originally intended for object classification, where images focus on one distinct, well-centered object. New benchmarks are needed to represent the challenges of navigating the complex scenes of an open world. Our new NovelCraft dataset contains multimodal episodic data of the images and symbolic world-states seen by an agent completing a pogo stick assembly task within a modified Minecraft environment. In some episodes, we insert novel objects of varying size within the complex 3D scene that may impact gameplay. Our visual novelty detection benchmark finds that methods that rank best on popular area-under-the-curve metrics may be outperformed by simpler alternatives when controlling false positives matters most. Further multimodal novelty detection experiments suggest that methods that fuse both visual and symbolic information can improve time until detection as well as overall discrimination. Finally, our evaluation of recent generalized category discovery methods suggests that adapting to new imbalanced categories in complex scenes remains an exciting open problem.Comment: Published in Transactions on Machine Learning Research (03/2023

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Genetic and Biochemical Analyses of the Arabidopsis atToc90 Protein

    Full text link
    Chloroplasts are photosynthetic organelles in plant and algal cells that capture sunlight energy to form energy-rich molecules that are the basis for almost all life. Chloroplast development requires more than 3000 different proteins, most of which are encoded by nuclear DNA. Thus, chloroplasts must import most of their proteins from the cytosol. They are surrounded by a double membrane called the envelope. Embedded in the envelope are the TOC and TIC complexes (translocon at the outer and inner envelope membrane of the chloroplast, respectively), which mediate protein import into the organelle. Several components of the TOC and TIC complexes have been identified. One example is the receptor Toc159, which in the model plant Arabidopsis thaliana has four isoforms: atToc159, atToc132, atToc120 and atToc90. It is known that atToc159 supports accumulation of photosynthetic proteins, while atToc132 and atToc120 support the import of non-photosynthetic, housekeeping proteins. However, the role of atToc90 remains uncertain. I investigated the function of atToc90 genetically by studying a series of Arabidopsis toc90 double and triple mutants, and by overexpressing atToc90 in mutants lacking other receptor isoforms. This work suggested limited functional redundancy between atToc90 and other TOC receptors (most notably, atToc159). By tagging TOC receptors known to act in each of the photosynthetic and non-photosynthetic import pathways, I was able to purify different TOC complexes from transgenic plants using tandem affinity purification (TAP). This indicated that atToc90 is present promiscuously in both atToc159- and atToc132/120-containing TOC complexes. Publicly available Affymetrix microarray data suggested a role for atToc90 during senescence. Thus, I investigated whether toc90 knockout mutants display any differences from wild type regarding leaf senescence. Indeed, some defects were observed, suggesting a role for atToc90 in the biochemical changes that occur in chloroplasts during leaf senescence

    Υπολογιστική μελέτη σύνθετων υλικών και εισαγωγή στα μεταϋλικά

    No full text
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Υπολογιστική Μηχανική

    Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development

    No full text
    Being sessile organisms, plants need to continually adapt and modulate their rate of growth and development in accordance with the changing environmental conditions, a phenomenon referred to as plasticity. Plasticity in plants is a highly complex process that involves a well-coordinated interaction between different signaling pathways, the spatiotemporal involvement of phytohormones and cues from the environment. Though research studies are being carried out over the years to understand how plants perceive the signals from changing environmental conditions and activate plasticity, such remain a mystery to be resolved. Among all environmental cues, the light seems to be the stand out factor influencing plant growth and development. During the course of evolution, plants have developed well-equipped signaling system that enables regulation of both quantitative and qualitative differences in the amount of perceived light. Light influences essential developmental switches in plants ranging from germination or transition to flowering, photomorphogenesis, as well as switches in response to shade avoidances and architectural changes occurring during phototropism. Abscisic acid (ABA) is controlling seed germination and is regulated by light. Furthermore, circadian clock adds another level of regulation to plant growth by integrating light signals with different hormonal pathways. MYB96 has been identified as a regulator of circadian gating of ABA-mediated responses in plants by binding to the TIMING OF CAB EXPRESSION 1(TOC1) promoter. This review will present a representative regulatory model, highlight the successes achieved in employing novel strategies to dissect the levels of interaction and provide perspective for future research on phytochrome-phytohormones relationships toward facilitating plant growth, development, and function under abiotic-biotic stresses

    Three Dimensional Power Doppler evaluation of human endometrium after administration of oxytocine receptor antagonist (OTRa) in an IVF program

    No full text
    Purpose To compare endometrial and subendometrial morphological changes and vascularity as measured by 3D Power Doppler sonography, based on a specific scoring system between women subjected or not to oxytocine receptor antagonist (OTRa) during IVF cycles. Methods Twenty-six women were divided into groups according to OTRa (Atosiban tractocide) administration. The first group (control n = 13 women) was examined with 3D Power Doppler 3 days after embryo transfer. The second group (n = 13 women) was administered 7.5 mg intravenous tractocide 2 days after embryo transfer and a 3D Power Doppler was performed after a day. Results The control group presented the following ultrasonographic characteristics: (a) echogenic endometrium in all cases, (b) endometrial thickness >7 mm in all cases (84.6%), (c) endometrial volume >2.31 cm(3) in 5 cases (38.5%), (d) abnormal sub-endometrial halo in 3 cases (23.1%), (e) endometrial blood flow in 6 cases (46.2%) and (f) complex vessel’s architecture in 2 cases (15.4%). In women who underwent OTRa administration were observed: (a) echogenic endometrium in 1 case (7.7%), triple line endometrium in 12 cases (92.3%), (b) endometrial thickness >7 mm in all cases, (c) endometrial volume >2.31 cm(3) in 11 cases (84.6%), (d) abnormal sub-endometrial halo in 3 cases (23.1%), (e) endometrial blood flow in 11 cases (84.6%) and (f) complex vessel’s architecture in 6 cases (46.2%). Conclusions Women who have taken OTRa presented an endometrium with characteristics more predictive of implantation
    corecore